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Abstract This paper studies bias correction
in Monte Carlo simulation of exolic option
valuationn. Due to the discretization error of
the stochastic differential equation of the dif-
fusion process [or the risk-neutralized stock
price, the maximum {minimum) of the op-
tion price obtained in simulation is under-
estimated {over-estimated). By applving the
Brownian bridge in each discretized time in-
terval, we obtain an analytical expression for
the expected value of the bias. The simu-
fation results are improved significantly by
adding this bias term. Numerical examples
are given to demonstrate the efficient perfor-
mance of our method,

Key Words: Monte Carlo Simulation, Brow-
nian Bridge, Option Valuation.

1. INTRODUCTION

Monte Carlo simudation 1s a standard tech-
nique in valuing exotic option price over a
specified time interval. It simply samples the
asset price path at the discrete time intervals,
The method gives a bias estimation for the
extreme values of the stock price because at
many times befween the intervals’ end points,
the maximum {minimum) may occurred and
ignored. Shorten the length of the time sub-
intervals can reduce the bias and give a more
accurate answer. Howewver, the bias error re-
ditces slowly whcn (.1ecrcf.1.=ﬂr;_;§ the length of
the time (see the nnmerical examples). In this
paper we study the blas correction in Monte
Carlo simulation of exotic option valuation by
Brovwnian bridge, We consider the discretiza-
tion of the stochastic differential equation of
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the diffusion process for the risk-neutralized
stock price:
dS(t) = rS(t)dt + o(t, 5{)dW (). (1)

Here let us define some notations which we
will be using throughout the discussion.

{i) S{t), the stock price at time 7,

(if) S(0), today’s stock price,

(i1} W (¢}, the standard Wiener process,
(iv) 7, the riskless rate,

(v)

{iv) T, the maturity time,

a(t, S(t}}, the volatility of the stock,

(v) £, the strike price.

In the standard simulation approach, we di-
vide the interval {0, T} into n equal intervals
as follows:

0=ty <h <lo< oo <oy <y =T

The discretized model of (1) is then given by

to, STENHW (ti41) — W{(ti)]

Here we assume that the volatility o(£,5(4;))
is constant in any sub-interval [£;,£;]. We
observe that the difference of the Wiener pro-
cess [W(ti11)—W(t:)] is & normal distribution
of mean zeros and variance 7'/n. By using
this fact and {2) we can obtain a sample path
of the stock price. Let us consider the Max



option as an example. The payofl of this op-
tlon in the discretized time interval is evalu-
ated as follaws:

X = max{0, max S{t;) —

o<i<n

E),

However, to avoid the stock price from going
to negative, we consider the following revised
model (the stock price is lognormal):

#(t, S(t))

= rdt -
TS

d(log(S)) dW (1),

The discretized medel is then given by

log (S (tey1)) — log(S(t:)) =
r(T/n) + SEZCL (W (k) ~ W (k).

The standard simulation algorithm for the
Max option reads:

(3)

For j=1to M
S(te) = S(0);
Fori=1ton

Generate IV ~ N(0, 1);

S(t) = S(fifl)emp(T(T/n)"f—W T/nN);
end;

X; = max{0, max,ci<n S{ti) — E};

end;

—rT 1 X
X=e L} . ¢
We remari{ that in our numericai examples,
. Thus in

the discretized model algorithm we have the

term
a(t:, S(t))
S(ti)

Many options such as the Max option, the
Knock-out option and the Swing option (they
will be discussed afterwards) require the max-
imum and minimum of the stock price see
[1, 2, 3] for instance. Thus the method above
will introduce a bias for the these extreme val-
ues {(maximum and minimum} of the stock
price. To deal with this bias, we apply the
Brownian bridge method in each discretized
interval and obtain an analytical expression
for the expected value of the bias. The sim-
ulation results are improved significantly by
adding this bilas term. Numerical examples

= 7.
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are given to demonstrate the efficient perfor-
mance of our method.

The remainder of the paper is organized as
follows. In §2, we derive the expression of the
bias by using the Brownian bridge method.
In §3, we give numerical examples to compare
our method with the standard Monte Carlo

and the method discussed in {1} for Max, Knock-

out and Swing options. Concluding remarks
are given in §4 to address some extensions of
our method.

2. BIAS CORRECTION BY BROWIAN

BRIDGE METHOD

In this section, we discuss bias correction by
using Brownian bridge method.

Lemma 1 Let W, be a Wiener process in the
time interval [0,7], then we have the condi-
tional probabilily

Plmazocic:W(t) > BIW(r) = a] = ¢ P27,

This result is known as the ‘tied down Brow-
nian motion’ or the ‘Brownian bridge’.

Proof: See [5, p. 265]. 0
We note that Lemma 1 simply tells us

Plmazecic, W{t) < BIW(r) =

(4)
In [1}, the authors apply Lemma 1 to each
sub-interval |t;,t;41] and generate a random
variable Bp,. with cumulative distribution
function (4). This can be done by the using
following function

o+ \/a-2 — 2(T/n)log(l — U}
2

Hence S(t;)erp(e(Bmaz)) (cf. standard sim-
ulation algorithm) 1s used as an estimation
for

where U ~

max {S()}.

Bty
Here we improve the result (see the numerical
examples) by using the following proposition.

Proposition 1 Let W, be a Wiener process
in the time interval [0, 7], then we have

/ﬂ'T w/2 L2
F(m&v!?o(g(r) = ()H-@a /(2T / g T du

g 2B~

cr},/'r‘

U, 1



and

b oy
J.I (?T?ET?(]<;<T) =y Q /(ZT)I\/“ / T

Proof:
By Lemma 1, we have

Plmazoeic- Wt < BIW(r) = ] = 1—¢ #E-a)/T,
By differentiation we have the conditional prob-
ability density function of (mazrpc<-W{t))
given by

s T 1rr — ) Oy}
Therefore we have

-y oo 2 2y— _t — /
E(mazosic,) = [o 22k yf o~ 2uly-al/T gy,

a2 w2’
_ (1’—!—{6,"2 [/'TT‘!“__ Cc/‘?. 2

dul}.

The expression in {.} is the expected bias, By
symmetry we also have

1
By applying Proposition 1 to each sub-interval
[, £}, to correct the bias due to discretiza-
tion, we can get a more accurate valuation of
the stock price. In the following section we
will demonstrate the eflicient performance of
our method by some numerical examples.

3. NUMERICAL EXAMPLES FOR 5CME
EXOTIC OPTION VALUATIONS

in this section, we give some simulation re-
sults for the Max, Knock-out and Swing op-
tions. We compare our results with the stan-
dard Monte Carlo simulation and the bias
correction method discussed in [1]. All the
simulations are done by using MATLAB in a
HP 712 workstation. We denote X, Xinar
and Xpg to be the results simulaled by stan-
dard Monte Carlo, bias correction method in
1] and our Brownian bridge bias correction
method respectively.

3.1 The Max Call Option

The Max call option is discussed in §1. In the
following simulations, we consider Max call
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optien with two different maturities T == 1/12
(one month) and T = 1/4 {three months) in
Table 1 and Table 2 respectively. The initial
price {today price) S{0) is 50 and sirike price
E = 5{0) = 50. For T = 1/12, we consider
two different number of discretization inter-
vals: n = 30 {one day) and n = 60 (half a
day) respectively. For T = 1/4, we consider
two different number of discretization inter-
vals: n = 90 (one day) and n = 180 (half a
day) respectively. The analyiic value of the
option has the following formula {see [3}):
2 2

SOHe ™ N (@) (1= ke T (1=N(d)) 14+ )~

where

(5}

dy = 7"—- - \/ww and dy = —{r+ _2_;)\/_1‘
and N(z) = == [ e7/dt. The following

tables give the simulated resulfs and the per-
centage errors of three methods. Among all
the three methods and the simulalted exam-
ples, our method gives the best performance.
The standard Monte Carlo simulation always
under-estimate the option values.

n = 30
m 1400 5000 10000
X 1 1996 (27%)  2.380 (13%) 2.549 (8%)
Kmer | 2.868 (5%)  3.005 (10%) 2.889 (6%)
Xe 2,608 (5%)  2.847 (4%) 2.838 (4%)
1 — 30
m 1000 5000 10000
Aae | 2472 (10%) 2532 (T%) 2.625 (4%)
Konar | 2.988 (9% 2933 (7%) 2.877 (2%)
Xg 2877 {5%) 2688 (2%) 2.712 (1%)

The maturity 7" = 1/12 {one month),
7 =025 p=r = 0.1, The true value is
2.732.

Table 1



g

n o= 90
) 10090 50060 10000
X | 4259 (6%) 4.356 {4%)  4.445 (2%)
Komaz | 4795 (6%) 4679 (3%) 4.627 (2%)
Xg | 4377 (4%) 4.567 (1%) 4.553 (0.4%)
n — 180
m 1000 5000 10000
Xy | 4288 (5%) 4.381 (3%)  4.407 (3%)
Kmaz | 4.852 (T%) 4703 (4%} 4.600 (1%)
Xp | 4633 (2%) 4598 (1%) 4.545 (0.2%)

The maturity 7" = 1/4 (three months),
o =0.25 p=r =01 The true value is
4.537.

Table 2

3.2 The Knock-out Option

In the Knock-out option, the traders believe
that the stock price will go down once a cer-
tain support level H is penetrated. Traders
who have a bullish short-term and long-term
ocutlook on the stock and would like a cheap
call would be interested in this kind of down-
and-out call. The payoff of a Knock-out op-
tion is given as follows (see [2, p. 410] and

[6]):
S(D) H? H*
B(S{0), ) — (—= ) =
Here B(S, F) is the standard Black-Sholes for-
mula for a call option with stock price S and
strike price K. For the standard simulation,
the payoff is given by

>/ B )

three methods and almost all the simulated
examples, cur method gives the best perfor-
mance.

n == 30

m 1000 5000 10000
Xpr | 4.596 (14%) 4.449 (10%) 4.244 (5%)
KXoz | 3.468 (14%) 3655 (9%)  3.881 (4%}
Xg 3.781 (6%) 3.824 (8%) 3.912 (3%)

7 = 90

7 10060 5000 10000

Xy | 4342 (8%) 4.231 (4%) 4.205 (4%)
Kooz | 3738 (7%)  3.823 (5%) 3.895 (3%}
Xz 13811 (%) 3.998 (1%) 4.012 (1%)

The maturity 7' = 1/4 (three months),
o = 0.5, 0 =0.15,r == 0.1. The true value is

4.032.
Table 3
n = b4
m 1000 5000 10000
X | 7825 (43%) 6.533 (19%) 5.977 (9%)
Xomae | 6.545 (19%) 5757 (5%) 5.732 (5%)
Xg {4757 (13%) 5.065 (8%) 5.353 (2%)
n = 360
m 1000 5000 10000
X 16321 (15%) 6.041 (10%) 5.955 (9%)
Xmaz | 5,742 (5%) 5703 (4%) 5.662 (3%)
Xg | 4648 (15%) 5.258 (4%) 5.395 (1%)

The maturity 7 = 1 {one year),

X =1 g(T) =B if X(T) > B and minogicn S(t:) > 5 0.5, 4 = 0.15,7 = 0.1. The true value is

otherwise.

In the following numerical examples, we let
H =45, E = §(0) = 50. We consider Knock-
out option with two different maturities T =
1/4 (three months) and 7" = 1 {one year) in
Table 3 and Table 4 respectively. Tor T' =
1/4, we consider two different number of dis-
cretization intervals: n = 30 (three-day) and
n = 90 (one-day) respectively. For T' = 1, we
consider two different number of discretiza-
tion intervals: n = 54 {one-week) and n =
365 (one-day) respectively. Among all the
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5.477.
Table 4

3.3 The Swing Option

The Swing option is useful for investors who
expect, the stock to have large trading range.
The opticn has no analytic solution and can
be made by buying a butterfly spread call op-
tion, see 4, p. 180]. The payoff of this option
1s given by:

X = max{0, max S(t;) — min S{&)— E}.

G<i<n n<i<n



In the following numerical examples, we let
FE = 5(0) = 50. We consider Knock-out op-
tion with two different maturities 7' = 1/4
(three months) and T' = 1 {one year) in Table
5 and Table 6 respectively. For T' = 1/4, we
consider two different number of discretiza-
tion intervals: n = 30 {three-day) and n = 90
(one-day) respectively. For T = 1, we con-
sider two different nmumber of discretization

{one-day) respectively., Again among all the
three methods and almost all the simulated
examples, our method gives the best perfor-
mance.

=30
m 1000 5000 10000
Xa | 0.795 (43%) 0.824 (35%) 0.925 (28%)
Komar | 0.048 (26%)  0.995 (22%) 1.025 (20%)
Xg | 0971 (24%) 1.112 (13%) 1.155 (10%)
n = 90
m 1000 5000 10000
Xa | 1.042 (18%) 1.005 (14%) 1.102 (14%)
Xmae | 1.053 (18%) 1.133 {11%) 1.195 (6%)
Xp | 1109 (6%) 1.222 (4%)  1.255 (2%)

The maturity T' = 1/4 (three months),

o = 0.25,1 = 0.15,7 =

0.1. The true value

= 1.278.
Table 5
1 = b4
i) 1000 50060 1000G
Apr | 8343 (19%) 8678 (16%)  9.548 (7%)
Konar | 9156 (11%;  0.545 (T%)  9.832 (4%)
Xg 9.535 (T%;  9.875 (4%) 9.953 (3%)
n = 360
03 1000 5G00 10800
Xpe | 8816 (14%)  9.066 (12%) 89.795 (5%)
Kmez | 89972 (3%) 10,071 (2%)  10.082 (2%)
Xe 110048 (2%) 10,158 (1%) 10.311 {0.3%)

The maturity T = 1 {one year),

9

=025, =0.15,r = 0.1. The true value
~ 10.282.
Table 8
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4. CONCLUDING REMARKS
We apply the Brownian bridge in bias correc-
tion of the Monte Carlo simulation of exotic
option valuation. We obtain an analytical ex-
pression for the expected value of the bias.
The simulation results are improved signifi-
cantly by adding this bias term. Numerical
examples are given to demonstrate the effi-
cient performance of our method.

Further results can be done on the valua-
tion of average options, see |4]. Tn this case,
the payoff of the option is given by

1 /7
?A S(i)dt.

We can still apply the Brownian bridge method
to each sub-interval [t;, ¢;,,] to obtain a better
resuit. One can show easily that
B(t) = a(l = =) + b + (W(t) — =W(T))
¥ =]l — =) + f— S
T T T
for 0 <t < T,

is & Brownian bridge from g to & on the time
interval [0,T1, see [5, p. 360]. Using this re-
sult, we can get a better estimation of the
payoff. Secondly for option like Lookback
call, [1} the volatility o(t,S5(¢)) shares simi-
lar stochastic process of the stock price. We
can still apply cur method to get a belter es-
timation of ¢(t,5(t)). It will be interesting
to extend our method to the above two cases.
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